A SUITE OF NATURAL LANGUAGE PROCESSING TOOLS FOR

GREEK
Prokopis Prokopidis Byron Georgantopoulos
Institute for Language and Institute for Language and
Speech Processing/Athena RIC, Speech Processing/Athena RIC,
Athens, Greece Athens, Greece
prokopis@ilsp.gr byron@ilsp.gr

Haris Papageorgiou
Institute for Language and
Speech Processing/Athena RIC,
Athens, Greece

xaris@ilsp.gr

ABSTRACT

To. tepaotio KeWUeVIKG OE00UEVA OV EIVOL OL0OE0IUO ONUEPA O NAEKTPOVIKH HOPQT OTAITODV EDPWOTES
teyvoloyies emelepyacios pvoikns ylaooog (E@I). H alvoida apOpwudtwv EDI mov éyxer avartdder to
Ivotitovto Enelepyociog tov Adyov eivar povadiki yio v EAAnvikn yAwooo. kor umopei va ypnoyomoinbei
1000 VIO, TH UEAETN O1OPOPWY YAWMOCIKMDV POIVOUEVMV VIO, EPEVVITIKODS OKOTODS 000 KOL YIO. THV ODTOUOTH
OVAIDON KEWEVIKDV GDILOYDV UE OTOYO TNV OTOOOTIKOTEPY OEIKTOOOTHON Kai xpiion tovg. 1o gpyaleio mov
apovaialoviol o€ ovto 10 GpOpo oTnpiloviar e TEYVIKES UNYOVIKNG HOONoNS 0lAd kai o€ vouobetikés
wpooeyyioeig. To. mepioootepa eivar #on diabéoluo ¢ dladiktvokes vmnpeoies amo) devboven
http://nlp.ilsp.gr/ws/.

1. Introduction

The vast amount of electronically available textual data constitutes a wealth of information for both
researchers and application developers. On the other hand, the overwhelmingly big datasets of today ask for
robust and efficient processing tools. While a variety of relevant processors exist for well-resourced
languages like English, it is often difficult to find similar tools for texts in less-spoken languages. In this
paper we provide an overview of natural language technologies available from the Institute for Language
and Speech Processing. This NLP suite is unique for the Greek language and comprises a series of
processing units based on both machine learning algorithms and rule-based approaches. We report on
updated versions of tools originally presented in Papageorgiou (2002) and, taking into account latest
developments in this field, on new processors that we have implemented, together with the resources we
created for their training and evaluation. Our infrastructure can be used by researchers interested in
studying linguistic properties of the Greek language. At the same time, it can be employed in application
scenarios involving fast processing of large document collections.

The paper is organized as follows. Section 2 discusses detection of paragraph, sentence and token
boundaries in input text. Modules presented in Section 3 assign POS tags and lemmas to tokens. Section 4
presents a dependency treebank for training data-driven parsers. A term spotting algorithm is discussed in
Section 5. Sections 6 and 7 focus on modules for sentence compression and text summarization. In Section
8, we discuss integration and use of the tools via standards-compliant web services.

2. Paragraph, sentence and token segmentation

At the first stage of our processing architecture, input is channeled to a module that segments text into
paragraphs, sentences and tokens. Input is read from locally stored text files or from documents collected
from the Internet, stripped of their HTML markup (apart from paragraph tags) and stored as XML files.

When paragraph segmentation is available in the input as paragraph markup, this is taken into account.
In the opposite case, a paragraph segmentor detects first whether input text has paragraphs broken across
lines. The segmentor counts the relative frequency of non-empty lines that begin with a character that is not
a capital letter or any kind of opening quote, dash, or opening bracket. If the relative frequency is less than
0.35, the tool assumes that end of lines constitute paragraphs. Otherwise, it assumes that input text contains
line-broken paragraphs and extends paragraph boundaries until a set of constraints, including occurrence of
empty or relatively short lines, is satisfied.

Sentence boundaries are detected inside paragraphs. The text of each paragraph is first segmented on
obvious sentence-final punctuation marks (e.g. .;!), while a set of rules based on regular expressions takes
care of not splitting strings like Internet URLS or currencies (e.g. http://www.host.gr/quote?id=NBGr.AT,
sftp:/ivis@ftp.ilsp.gr, 0r35.000). Following this simplistic segmentation, a set of post-processing heuristics
is used to join wrongly split text segments into sentences. As an example, these heuristics examine whether
the sentence previous to the one scanned ends with an abbreviation. For a string to be classified as an
abbreviation, the tool consults an abbreviation list containing approximately 2K entries. Alternatively, it
checks whether the string matches a relevant regular expression. If the previous sentence ends in a non-
breaking abbreviation like dpbp., 4p. or oyl., the two sentences are joined into one. In the case of
abbreviations that can occur in a sentence-final position like 2.z.E., A.E. or yAu., the initial sentence split is
maintained if the second sentence starts with a capital letter. Similar heuristics are used for correcting splits
between initials and last names, or splits in texts with line-broken paragraphs.

The next process is tokenization, i.e. the recognition of word and punctuation boundaries inside the text
of each sentence. This again involves an initial split at obvious points in the input text (spaces, punctuation
marks, etc.), followed by some postprocessing. The latter includes cases like avoiding the separation of the
relative indefinite pronoun 4,z:; splitting the 2™ and 3" personal pronoun combination & 'zo in two tokens;
disambiguating between contracted forms like p0¢r and quote-token combinations like épfer’ and
recognizing one and three tokens, respectively; splitting off the period from the last word of the sentence,
but remembering not to do it when the last word is an abbreviation like O.H.E.; detaching parentheses and
hyphens but not in the case of enumerators like 2.1.1) or of negative numbers like -12,32; etc. Each
detected token is assigned a token type on the basis of the token itself and, in certain cases, the context of
the token. The list of token types with some indicative examples is shown in Table 1.

Token type Example Token type Example
DATE 16/6/43 ENUM (enumerator) 21 i.a)
PUNCT (punctuation) , - * (ano-teleia) DIG (digit) 1.0009,1% - % V'
PTERM (terminal punct.) L INIT (initial) T Xp. I'ep.
PTERM_P (potentially terminal Lol ABBR (abbreviation) | 610.0I4 XY.P1.ZA
punct.)
OPUNCT (opening punct.) «"([{ NBABBR (non- TT.). OvoQ.

breaking abbr.)
CPUNCT (closing punctuation) »")]} TOK (default) Default type for all

other tokens

Table 1: Token types

Sentences are also assigned a type attribute based on their capitalization. The list of values for sentence
types includes uppercase for sentences typed in capital letters and titlecase for sentences where the
first letter of every token is capitalized. An optional process involves normalization of uppercase
sentences or sentences with regular capitalization, when no diacritics have been used by the author of the
text. In this step, diacritics are restored to ease processing of other downstream processors like part of
speech taggers and parsers. Diacritic restoration is performed as in Scannell (2011) by querying a lexicon of
frequent words and, in the case of ambiguity (dixn/dixn), a table of bigram probabilities (e.9. 5(xn|-
|moA 1 1xn) learned from large crawled corpora of Greek.

3. Part of speech tagging and lemmatization

After tokenization, we add morphosyntactic annotations to each token using a part of speech tagger called
FBT. FBT is an adaptation of the Brill tagger (Brill, 1992) trained on a manually annotated corpus of Greek
texts amounting to 455K tokens. During manual and automatic annotation, we use a tagset of 584
combinations of basic POS tags (Table 2) and morphosyntactic features, which capture the rich morphology
of the Greek language®.As an example, the full tag 23BaMasgNm for a word like zapayddnc denotes an
adjective of basic degree, masculine gender, singular number and nominative case.

POS Description POS Description

Ad Adverb Pnlr Interrogative pronoun

Aj Adjective PnPe Personal pronoun
AsPpPa Preposition + Article combination PnPo Possessive pronoun
AsPpSp Preposition PnRe Relative pronoun

AtDf Definite article PnRi Relative indefinite pronoun
AtId Indefinite article PtFu Future particle

CjCo Coordinating conjunction PtNg Negative particle

CjSb Subordinating conjunction PtOt Other particle

PnDm Demonstrative pronoun PtSj Subjunctive particle

Table 2: Common part of speech tags

For the construction of the corpus, linguists had to correct automatically assigned tags from an initial
version of the tagger. We used interfaces that allow annotators to select between (features of) tags for
ambiguous tokens. For example, in Figure 1, a user selects the Nm (nominative) value for the case feature to
correct a wrongly assigned Ac(cussative) for the noun ozpardmedo.

X TRee EDitor Default{1/1): http:#/nlp.ilsp.gr/nlpfexamples/OP_PRISfs (v .~ x I > .
nput TOU pvnuovLakoU/AjBaNeSgGe
File Node Tree View Macros Setup Help Made: | GDT_M_Edit — p X e Lpd)\)O(/NOCmMaSgGe
Z=ENGEE \\‘—-|®”*f~| > ;‘\o‘\|@@‘j:‘ .,:‘ Rule AjBaNeSgGe —>AjBaMaSgGe
#41 To oTparémedo aTo oTioio Bpioképouy , ota Oupdhia, |- 41118
rfiTav oAU pikpd , uttipxav poiig 60 kparoUpevol kar 100 [9 NEXTTAG NoCmMaSgGe
X EdtRe @ G " . i Output TOU pvnuovLakoU/AjBaMaSgGe
Q| nocmmesy Foe X € Lpdva/NoCmMaSgGe
- e To AtDfNeSgNm
Ac Da
: m otparémedo NoCmNeSgAc Input amoLTE (TOL
i Ve oto AsPpPaNeSgAc dlLapxrnc/AjBaFeSgNm
oToio PnReNe03SgAcXx enaypunvnon/NoCmFeSgAc
Bpioképouy VbMnldPa01SgXxlp Rule NoCmFeSgAc ->NoCmFeSgNm
Tag suggestions from lexicon DB . PUNCT PREVTA(:} Aj Ba Fe S gNm
NoCmNasgVo E oTa AsPpPaNePlAc | OUtpUt (;HO(LT ? LT L
- | LapknG¢/AjBaFeSgNm
ok | _coma | T e enoypunvnon/NoCmFeSgNm
Figure 1: User interface for annotation of POS tags Table 3:Context rules correcting gender and case

During automatic processing, the tagger assigns to each token the most frequent tag in a lexicon
compiled from the training corpus and augmented with entries from ILSP's Morphological Lexicon®. A
lexicon of suffixes guides initial tagging of unknown words: for example, an entry like vioxou-
AjBaNeSgGe would assign this specific tag to a word like uvyuoviaxod. After that, a set of about 800
contextual rules is applied to correct initial tags. The rules were automatically learned from the training
corpus as detailed in Papageorgiou et al. (2000). When a token exists in the lexicon, rules are allowed to
change its tag only if the resulting tag exists in the token’s entry in the lexicon. As an example of rule

1 See http://nlp.ilsp.gr/nip/tagset_examples/tagset_en/ for a full description of the tagset, including all
morphosyntactic features and indicative examples.
2 http://www.ilsp.gr/en/services-products/langresources/item/32-ilektronikomorfologiko

application, the first rule in Table 3 would assign a masculine value for the gender feature of wvnuoviaxod
in a context like puvpuoviaxod yewdva. FBT’s accuracy has been tested against a 90K partition of the
manually annotated corpus not used in training. The tagger’s accuracy reaches 97.49% when only basic
POS is considered. When all features (including, for example, gender and case for nouns, and aspect and
tense for verbs) are taken into account, the tagger’s accuracy is 92.54%.

Following POS tagging, a lexicon-based lemmatizer retrieves lemmas from the Morphological Lexicon.
This resource contains 66K lemmas, which in their expanded form extend the lexicon to approximately 2M
different entries. When a token under examination is connected in the lexicon with two or more lemmas,
the lemmatizer uses information from the POS tags assigned to disambiguate. For example, the token
evoylioerg Will be assigned the lemma evoyid, if tagged as a verb, and the lemma evdydnon, if tagged as a
noun.

4. Dependency parsing

One of the most prominent current paradigms in automatic syntactic analysis is dependency parsing.
Dependency parsers create tree representations for each input sentence, where each word depends on a
head word and is assigned a label depicting its relation to the head word. Treebanks with manually created
annotations are used to train and evaluate data-driven dependency parsers. We have trained open source
parsers on the Greek Dependency Treebank, a resource that comprises data annotated at several linguistic
levels (Prokopidis et al., 2005). As of 2011, GDT contained 118+K tokens in 4948 sentences, while more
annotated texts are being added®. Lemmas and POS tags for all tokens are manually validated. The texts
include transcripts of European parliamentary sessions, articles from the Greek Wikipedia and web
documents pertaining the politics, health, and travel domains.

Dep. Rel Description Dep. Rel. Description
Pred Main sentence predicate Coord A node governing coordination
Subj Subject Apos A node governing apposition
Obj Direct object * Co Anode governed by a Coord
10bj Indirect object * Ap Anode governed by an Apos
Adv Adverbial dependent AuxC Subord. conjunction node
Atr Attribute AuxP Prepositional node
= A node whose parent node is not Particles or auxiliary verbs

xD . - AuxV

present in the sentence (ellipsis) attached to a verb

Table 4: Common dependency relations in the Greek Dependency Treebank

The scheme used during manual annotation includes 25 main relations (Table 4) and is based on an
adaptation of the guidelines for the Prague Dependency Treebank (Bohmova et al. 2003). The guidelines
include indicative examples of several syntactic phenomena. For example, coordination structures (Figure
2) are headed by a conjunction assigned the label Coord, while each node headed by the conjunction is
annotated with a label like Obj_Co. These labels denote both the node’s function in the sentence and the
fact that it participates in a coordination structure.

Coonl

[red] —
- ~| - ~
|
[| || @& | o
' \ 1 v
beopevtnroy ot Bo Spacovv apfowg wor Bo mépovv pétpo
Figure 2: Representation of coordination structures
The scheme allows for simple and intuitive descriptions of structures common in languages which, like

Greek, exhibit a flexible word order. Since dependency relations are directly encoded, without the
presupposition of any default constituent structure from which all others are derived, representation for the

3 Updated information on the GDT can be found at http://gdt.ilsp.gr/.

main relations in a sentence is straightforward. In an OVS example like v éykpior tovg édwaoav or
vmovpyoi, the verb édwoav heads the sentence as the main predicate, while two words, éyxpion and
vmovpyoi, are annotated as object and subject dependents of the predicate respectively.

Non-projective structures are also allowed in the scheme. As an example, subjects or objects extracted
from an embedded clause can be linked to their head without the use of co-indexation with a trace. This is
illustrated in the non—projective tree of Figure 3, where the relative pronoun oroia directly depends as a
subject to its head éleirav, thus crossing the link of the verb heading the relative structure to the antecedent.

Aldr -\l
-~ ."iu.lli,i -‘I
f
| \ '|
|
¥
Bpnroy YOLPTLE T ool MO TEVOV OTL EAELTOY

Figure 3: Non-projective relation

In n-fold experiments with the MaltParser system for dependency parsing (Nivre, 2007), we have
trained models on the GDT that showed an overall labeled attachment score (i.e. the proportion of tokens
attached to the correct head and assigned the correct dependency relation) of 74.83% and an overall
unlabeled attachment score of 81.04%. Precision and recall for the subject relation reached 83.49% and
89.46% respectively.

5. Term extraction

We can view terms as linguistic realizations of domain specific concepts, usually lexicalized in the form of
noun phrases. For terminology recognition we have implemented a hybrid methodology: we initially
construct a candidate term set using a term grammar and then filter this set through statistical techniques.
The module operates on input with lemmas and part-of-speech tags assigned to each word. First, the
following term pattern grammar recognizes single and multi-word (up to 4-word) candidate terms:

((Adj |Noun) * (Prep|Det) ?) (Adj|Noun)* Noun

Then, a statistical filter following the tf-idf paradigm is applied to the list of grammar-extracted terms in
order to rank them according to statistical evidence. The reference corpus used in the idf calculation is the
Hellenic National Corpus (HNC, http://hnc.ilsp.gr), a 47M words tagged and lemmatized corpus covering a
wide range of topics including, among others, news, literature, science and business. The following formula
calculates the confidence score for a term:

Score(candidate) = tf - log(idf)

In the case of 2-word terms we use contingency table statistics (Daille, 1995). For a given pair w; + w;
(as, for example, in the case of noun + noun), the contingency table is defined as in the following table:

Wi | Wi, j#j ’
W a b
Wi, i | C d

Table 5: Contingency table for 2-word terms

where a stands for the frequency of pairs involving both w; and w; (number of occurrences of a pair); b
stands for the frequency of pairs involving w; and w;- (number of occurrences of pairs where a given word
appears as the first element of the pair); ¢ stands for the frequency of pairs involving w;-and w; (number of
occurrences of pairs where a given word appears as the second element of the pair); and d stands for the
frequency of pairs involving w;- and w;-and has a constant value calculated from the HNC (total number of
occurrences of all the pairs in the reference corpus). The score formula is based on log-likelihood:

Score(2 —word)=a -logla) + b-log(h) +c-loglc) +d - log(d)
—(a +b)-logla +b) —(a+c)-logla + c)
—(b+d)loglb+d)—{(c+d) loglc+d)
+ta+b+c+d - logla+b+c+d)

A couple of factors were taken into consideration in order to smooth the confidence scores across
candidate terms with (1) the same number of words and (2) with different number of words. Regarding the
former factor, the top-scoring term of each set of terms with the same number of words is assigned a score
of 1 (the maximum) and all the others are analogically calibrated from 0 to 1. Regarding the latter factor, in
order to account for the fact that idf statistics are getting sparser as the number of words increases, we
weight the score of a candidate term with the number of words it maintains, in a logarithmic fashion:

Score(n — word term) = OriginalScore - (1 + Eog(‘n))
Figure 4 displays an example of terms extracted from the sentence: Xe xivyromoinon kozefoivovv v

Tetaptn kot v Héummn ot epyalouevor tng Wind kai g Vodafone yio tig edaotikés oyéoeig epyaoiog (axoua.
Kot evoikiaon i twinon epyalouévav!!) alld kar yio Tic Topdvouss amolioelg.

<Term conf="0.784" end="#w2" start="#w2" text="xkivntonoinon"/>

<Term conf="0.915" end="#wl0" start="#wl0" text="gpyaldbupevol"/>

<Term conf="1" end="#w20" start="#wl8" text="eloaotlkéc oxéoceiLg epyaociag"/>
<Term conf="0.596" end="#w24" start="#w24" text="evoixkiaon"/>

<Term conf="1" end="#w27" start="#w26" text="nodAnon epyalopéveov"/>

<Term conf="1" end="#w36" t="#w35" text="mop&vopeg amnoddceig"/>

Figure 4: Example output from the term extractor
6. Sentence compression

Sentence compression is used as a building block in, among others, text simplification and automatic
summarization applications. Our sentence compression tool (Prokopidis et al., 2008) processes
syntactically analyzed input by a) replacing words with paraphrases shorter in length and b) deleting
elements carrying relatively small semantic information.

We used a thesaurus of synonyms and antonyms (Iopdavidov, 2005) to manually construct an initial
seed of paraphrase lemmas. Paraphrases that were too domain- or register-specific were filtered-out. We
then evaluated the seed against the HNC, checking for paraphrase interchangeability and applicability in
different linguistic contexts. When all morphological variants of each lemma were automatically generated,
we came up with a table of 9860 paraphrase entries consisting of types and morphological features shared
by types (Figure 5). Since input is expected to be automatically annotated for the same features, this
information guides the paraphrase module into making correct substitutions for homographic source types
that may correspond to more than one target types. Thus, if input text contains the noun Giacwreg, the
module will choose between ozadoi and omadod based on the case feature automatically assigned to the
source noun.

<Paraphrase source="6iaocHt1ec" stag="NoCmMaPlAc" target="onoadoUug" />
<Paraphrase source="0L0oH1ec" stag="NoCmMaPlNm" target="onodol" />
<Paraphrase source="ayoboepyliecg" stag="NoCmFePlAc" target="euepyeoclieg"/>

Figure 5: Paraphrases sharing the same morphological features

A set of deletion rules operates on the output of the paraphrase module. Each deletion rules traverses the
nodes of the dependency tree, checking whether specific morphosyntactic constraints apply for the node
currently examined. When the constraints match, the node and the subtree that is headed by this node are
marked as deletables. Constraints may focus on the node’s (or children or parent nodes’) dependency

relations, their POS tag, etc. The most frequent actions involve deletions of adjectives (delAdjs), adverbs
(delAdvs, Figure 6) and preposition-headed adverbials (delPPs). As an example, delAdjs selects as deletion
candidates adjectives which a) are not the heads of other nodes (e.g. o kalitepoc 6Awv) and b) are not
headed by a copula verb (e.g. sivar uévog). Subtrees marked to be deleted are ranked according to their
relevance, which is estimated as in Daelemans et al. (2004) on the basis of the log-likelihood of the
frequencies of the subtree words, as these frequencies were observed in a 70M words Greek corpus. Using
this information, the deletion of less significant subtrees, which is expected not to seriously affect sentence
meaning, precedes elimination of more important subtrees.

Orig: Tic televtaleg dexaetiec 1tng tTLCc mnmépace oto Haplol, omou oxdpuioe
ape LOOC Ta XpHuatd tng oe ayoaboepylecg.

Paraphrase 7_1: ayaBoegpyieg -> esvepyeoieg

Alt: Tig Tedevutaleg dexaetlieg Tng TLg népoce oto Haplol, omou okdpmioe
apeLdOC 1o XpHpatd tng o sguepyeolieg.

Deletion 7 2: (relevance =13.38): apelLddg

Alt: Tuig teAlevtaleg dexraetieg 1tng tLg mépace oto Haplol, dmou oxkbdpmlos 1O
XpAuot&d Tng og euegpyeoieq.

Figure 6: Reducing sentence length via paraphrase application and subtree deletion
7. Text summarization

Recent work on text summarization has mainly focused on producing extracts rather than abstracts,
reflecting the difficulty in tackling complex NLP problems such as anaphora, polysemy, world knowledge,
etc. Our summarizer provides extract-based, single document summaries. For each sentence a score,
indicative of its salience, is calculated as a weighted sum of several summary-worthy features. The
summarization process requires an input with terms and named entities recognized. Currently used features
for each sentence include sentence location: sentences closer to the beginning of a document are favored;
sentence length: sentences shorter than n (currently 5) content words are discarded; and term and named
entity occurrence: inclusion and weight of terms and named entities in a sentence increases the sentence’s
importance. The scoring formula for all sentences with length > n is the following:

Dl —5p+1 wrSr+w,5,
D] length(s)

Score(s) =w,log

where |D] is the total number of sentences in the document, Sp is the position of the sentence (/... |D]), St
is the sum of confidence scores for each term in the sentence, Sy is the sum of confidence scores for each
named entity in the sentence and length(s) is the number of content words in the sentence. The respective
feature weights are {w,, wr, wy} ={1, 4, 4}.

The final extract is built from top-scoring sentences selected in their original order in the text. The
number of extracted sentences is determined by a compression factor currently set to 10% of the original
text. The following figure displays a document with the top-selected extract sentence highlighted.

Yhpo umnmép piLag Eupdnng mou Ba «peItpd» ¢ noaykdédopla dUvoun (ntd o Tipdx. O
SLpdxr omérAeloe 1O evdexduevo vo nopoltndel, e&v TeALlrk& oL Té&AANoL
katoynei{ocouv 10 EupwoUviayucx. To «béxiL» oto dnpoyfplopa yia to EupwoUuviaypa
O kKabuotepfoel TNV E€UPWNALKN OAoKANpwon, mnpoeLdomoinoce toug I'&AAoucg
MOAITEC O ZaK ZLPAK, eyRalviI&lovtagc SUVOPLKRA TNV E€KOTPATELN UNEP TOU «VAL»
BE THAEONTLKA TOU eppavion. O I1pdk KEAeCE TOUC OUHNXTPLOTEC TOU VA
Uneioouv «voal» oto kploitpo dnuoyneiopx 1ng 29n¢ Motfou, mpokxkelpévou Vo
oupfRd&rouv otnv olxkodédunocn «uiog Eupdnng, mnou Boa 'pertpd' wc dUvoun oOTov
kbéopo tou aUplo». Tautdxpova, omékAseloe 10 evdexduevo mnopalinofng tou, e&v
TeALRE ynoloouv «OXL» o010 EUpwoUviayuo.

Figure 7: Top-selected sentence for an extract-based summary

8. Integrating and accesssing the tools

Integrating the tools mentioned above into a robust and efficient pipeline capable of analyzing the
enormous amounts of texts available online today is not a trivial task. To accomplish this goal, we have
wrapped all tools as UIMA (http://uima.apache.org/) modules. UIMA is an open source framework for
developing analyzers of unstructured data. The framework caters for separation of algorithmic design from
input and output requirements and allows NLP engineers to predefine the annotation type system to use.
The framework also uses the stand-off annotation practice, where automatic and manual annotations
compatible to the type system are separated from primary data.

Our team has been actively involved in national and European projects aiming at automating the stages
involved in the acquisition, production, updating and maintenance of language resources and tools. Given
the large number of linguistic services and tools already developed by various organizations throughout
Europe, the need for building interoperable infrastructures surpassing different underlying technologies
becomes apparent. To this end, we have already made available most of the tools described above as web
services that can be accessed and tested by linguists or other interested end-users from http://nlp.ilsp.gr/ws/.
Since these services are standards-compliant, they can be combined with services provided by other teams
and organizations in larger processing workflows.

9. Conclusions and future work

We presented a suite of robust processing tools for the analysis of Greek texts that can be used in research
and application settings. The tools are developed and evaluated on the basis of several manually annotated
resources. We plan to augment this battery of language resources and tools in the hope that this effort will
provide valuable support to both theoretical linguists and language engineers. Our current research focuses
on the development of tools for coreference resolution and spatiotemporal anchoring of events.

10. Acknowledgements

This paper was supported by PANACEA, a 7th Framework Research Program of the European Union,
contract 7FP-1TC-248064.

References

Bourigault, D. 1992. “Surface Grammatical Analysis for the Extraction of Terminological Noun Phrases”. In
Proceedings of the 14th International Conference on Computational Linguistics. Nantes.

Bohmova A., J. Haji¢, E. Hajicova, and B. Hladka. “The Prague Dependency Treebank: A Three-Level Annotation
Scenario”. In Treebanks: Building and Using Parsed Corpora. Kluwer, 2003.

Boutsis S., P. Prokopidis, V. Giouli and S. Piperidis. 2000. “A Robust Parser for Unrestricted Greek Text”. In
Proceedings of the 2nd Conference on Language Resources and Evaluation. Athens.

Brill, E. 1992. “A simple rule-based part of speech tagger”. In Proceedings of the Workshop on Speech and Natural
Language, 112-116.

Daille, B. 1995. “Combined approach for Terminology Extraction: Lexical statistics and linguistic filtering”. In
TALANA, Universite Paris 7.

Daelemans, W., A. Hothker and E.Tjong. 2004. “Automatic Sentence Simplification for Subtitling in Dutch and
English”. In Proceedings of the 4th International Conference on Language Resources and Evaluation. Lisbon.

Frantzi, K.T., S. Ananiadou and H. Mima. 2000. “Automatic recognition of multi-word terms: the C-value/NC-value
method”. International Journal on Digital Libraries, 3(2): 115-130.

Georgantopoulos B., T. Goedeme, S. Lounis, H. Papageorgiou, T. Tuytelaars and L. Van Gool. 2006.“Cross-media
Summarization in a retrieval setting”. In Proceedings of the 5th Conference on Language Resources and
Evaluation. Genova.

Georgantopoulos, B. and S. Piperidis. 2000. “A Hybrid Technique for Automatic Term Extraction”. In Proceedings of
International Conference on Artificial and Computational Intelligence for Decision, Control and Automation in
Engineering and Industrial Applications- ACIDCA'2000, 124-128.

Topdavidov, A. 2005. Onoavpic Zvvwviuwy ko Avtibétwv s Néog EAMnvikns. Exdoceig IMatdxng, Adfva.

Nivre, J., J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kiibler, S. Marinov and E. Marsi. 2007. “MaltParser: A language-
independent system for data-driven dependency parsing”. In Natural Language Engineering, 13(2): 95-135.

Papageorgiou, H., P. Prokopidis, P., V. Giouli and S. Piperidis. 2000. “A Unified POS Tagging Architecture and its
Application to Greek”. In Proceedings of the 2nd Language Resources and Evaluation Conference, 1455-1462.
Athens.

Papageorgiou H., P. Prokopidis, I. Demiros, V. Giouli, A. Konstantinidis and S. Piperidis.2002. “Multi-level XML-
based Corpus Annotation”. In Proceedings of the 3rd Language Resources and Evaluation Conference. Las Palmas.

Prokopidis, P., E. Desipri, M. Koutsombogera, H. Papageorgiou and S. Piperidis. 2005. “Theoretical and Practical
Issues in the Construction of a Greek Dependency Treebank”. In Proceedings of The Fourth Workshop on
Treebanks and Linguistic Theories, 149-160. Barcelona.

Prokopidis P., V. Karra, A. Papagianopoulou and S. Piperidis. 2008. “Condensing sentences for subtitle generation”. In
Proceedings of the 6th Language Resources and Evaluation Conference. Marrakech.

Radev D., T. Allison, S. Blair-Goldensohn, J. Blitzer, A. Celebi, S. Dimitrov, E. Drabek, A. Hakim, W. Lam, D. Liu, J.
Otterbacher, H. Qi, H. Saggion, S. Teufel, M. Topper, A. Winkel, Z. Zhang. 2004. “MEAD - a platform for
multidocument multilingual text summarization”. In Proceedings of the 4th Conference on Language Resources
and Evaluation. Lisbon.

Scannell, K. P. 2011. “Statistical unicodification of African languages”.In Language Resources and Evaluation 45(3):
375-386

	Introduction
	Paragraph, sentence and token segmentation
	Part of speech tagging and lemmatization
	Dependency parsing
	Term extraction
	Sentence compression
	Text summarization
	Integrating and accesssing the tools
	Conclusions and future work
	Acknowledgements

